CEE 616: Probabilistic Machine Learning

UMass Amherst, Fall 2025

Canvas Lecture Videos Gradescope Notebooks

Jimi Oke

jimi@umass.edu

Office Hours

Tue/Wed, 2:20–3:20PM, Marston 214D

Schedule

Module 1 Foundations

Tue, Sep 2
LECTURE 1AIntroduction
Thu, Sep 4
LECTURE 1BProbability
Tue, Sep 9
LECTURE 1CStatistics
PROBLEM SET 1PDF, LaTeX, Solution (Due 9/25)
Thu, Sep 11
LECTURE 1DDecision and Information Theories
Tue, Sep 16
LECTURE 1ELinear Algebra
Thu, Sep 18
LECTURE 1FOptimization

Module 2 Linear Methods

Tue, Sep 23
LECTURE 2ALinear Discriminant Analysis
Thu, Sep 25
LECTURE 2BLogistic Regression
Thu, Oct 2
LECTURE 2CLinear Regression (OLS/WLS)
Tue, Oct 7
LECTURE 2EGeneralized Linear Models
NOTEBOOKGLM - Poisson and Logistic
Thu, Oct 9
LECTURE 2DRidge and Lasso Regression
PROBLEM SET 2PDF, LaTeX; Due: 10/16
NOTEBOOKRidge and Lasso

Module 3 Deep Neural Networks

Thu, Oct 16
LECTURE 3ANN for Structured Data I
PROBLEM SET 3PDF, LaTeX
NOTEBOOKXOR demonstration
Tue, Oct 21
LECTURE 3BNN for Structured Data II
NOTEBOOKANN-Exploration
Thu, Oct 23
LECTURE 3CNN for Images
NOTEBOOKCNN-Exploration
Tue, Oct 28
LECTURE 3DNN for Sequences
NOTEBOOKRNN-Exploration

Module 4 Nonparametric Methods

Thu, Oct 30
LECTURE 4ANonparametric Methods
PROBLEM SET 4PDF, LaTeX
Thu, Nov 6
LECTURE 4BGaussian Processes
Thu, Nov 13
LECTURE 4CSupport Vector Machines

Tue, Nov 18: LECTURE 4DTrees and Ensemble Methods

Module 5 Unsupervised Learning

Tue, Dec 2
LECTURE 5APrincipal Components Analysis
Thu, Dec 4
LECTURE 5BFactor Analysis and Autoencoders