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What is Clustering?

• Exploratory technique to discover useful relationships in data

• Can also be used for classification

• Clustering means grouping n observations into homogeneous partitions

• There is no dependent variable, y (unsupervised learning)

• Observations xj are grouped based on similarity

• Objective:
• high similarity between items that belong to the same cluster
• low similarity (high separation) between different clusters
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Clustering Application: Marketing

• Customer segmentation based on brand loyalty and price sensitivity scores.

Source: http://www.select-statistics.co.uk/
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Similarity Measures

• How similar are two observations?
• Geographical distance
• Vehicle color
• Vehicle type
• Vehicle brand
• Engine type
• Engine power
• ...

Figure: Vehicles as items for cluster analysis
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Similarity measures: numerical/quantitative data

Comparing two vectors, xi and xk , with p variables/features:

• Euclidean distance

d(xi , xk) =

√√√√ p∑
j=1

(xij − xkj)2 (1)

• Manhattan distance

d(xi , xk) =

p∑
j=1

|xij − xkj | (2)

• Minkowski distance

d(xi , xk) =
[ p∑

j=1

|xij − xkj |m
]1/m

(3)
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Similarity measures: Categorical data

• Based on presence or absence of certain characteristics (binary variables).

• Contingency table: variable matches and mismatches between observations
(items) i and k .

Source: Johnson & Wichern

• Various similarity coefficients can be calculated from these frequencies:
• examples a+d

p
, a
p

• Distance can be constructed from similarity measures. Under some hypothesis,
dik =

√
2(1− sik), where sik is the similarity between samples i and k.
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Some notes about distance metrics

• Care should be taken with multiple dimensions and varying scales
• Scaling/normalization typically leads to better results

• E.g. Min-max scaling: xnew =
x − xmin

xmax − xmin
, xnew ∈ [0, 1]

• Choice of similarity measure:
• May lead to different groupings
• Subjective and domain-dependent
• Dependent on the variable type (discrete, continuous, binary)
• Dependent on the scale of measurement

• For items/entities, similarity is typically based on some measure of distance

• For variables, similarity is based on statistical correlation
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K -means Clustering: Definitions

• K : Number of clusters. Design
parameter to decide in advance.

• Cluster centroid: mean of observations
assigned to cluster Ck :

x̄k ≜
1

|Ck |
∑
x∈Ck

x

• Within cluster variation of the k-th
cluster

W (Ck) ≜
1

|Ck |
∑
x∈Ck

d(x, x̄k)
2

• Usually d(x, x̄k)2 =
∑r

j=1(xj − x̄kj)
2

• Goal: minimize total variation

min
K∑

k=1

W (Ck)

• ⇒ Assign x to Ck with minimum
d(x, x̄k)

Source: www.scikit-learn.org
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K -means Clustering: Illustration (a) - (d)

min
∑K

k=1
1

|Ck |
∑

x∈Ck
d(x, x̄k)2

Source: Cristopher M. Bishop, Pattern Recognition and Machine Learning
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K -means Clustering: Illustration (e) - (h)

min
∑K

k=1
1

|Ck |
∑

x∈Ck
d(x, x̄k)2

Source: Cristopher M. Bishop, Pattern Recognition and Machine Learning
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K -means Clustering: Algorithm

initialize K
centroids

start

assign ob-
servations
to clusters

update
cluster

centroids

convergence
reached?

stop
yes

no

• At each Assign and Update, the total W
decreases until convergence.

• The W at convergence depends on the
initial centroids chosen (local minimum).

• Repeat the algorithm with different random
initial centroids multiple times, and choose
the clustering with the lowest W .
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KMeans example: MIT tech shuttle

Purple dots: GPS points from buses; Red dots: centroids
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Clustering Hubway rentals

• Comparing patterns

• Challenge: group stations according to similar demand patterns
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Clustering Hubway rentals
• Month of November 2013
• Consider weekdays only
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Clustering Hubway rentals (cont.)

Figure: AM Peak, PM Peak, Low Usage docks
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Choice of K

Which K would you choose?

• Having to pre-specify K is one limitation of the K -means approach

• However, several statistics can be used to choose the best K , e.g. gap
statistic (Tibshirani et al., 2001; ESL p. 519)

• An alternative is hierarchical [agglomerative] clustering (HAC), which gives a
tree-based representation of the dataset

Jimi Oke (UMass Amherst) L5c: Clustering Tue, Dec 9, 2025 17 / 1



Mixture models for clustering

• Assume data generated from a mixture of K distributions

• Each cluster corresponds to one component of the mixture

• E.g. Gaussian Mixture Model (GMM):

p(x |θ) =
K∑

k=1

πkN (x |µk ,Σk) (4)

• πk : mixing coefficient (prior probability of cluster k), µk : mean, Σk :
covariance matrix

• Parameters can be estimated using Expectation-Maximization (EM)
algorithm

• Soft clustering: each observation has a probability of belonging to each
cluster

• Hard clustering: assign each observation to the cluster with the highest
probability
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Gaussian mixture modeling (GMM)

A mixture of K Gaussian distributions is given by:

p(x |θ) =
K∑

k=1

πkN (x |µk ,Σk) (5)

where θ = (π, {µk ,Σk}).
These parameters are estimated typically via the EM algorithm.
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EM algorithm for GMM clustering

• E-step: Compute responsibilities

rik =
πkN (xi |µk ,Σk)∑K
j=1 πjN (xi |µj ,Σj)

(6)

• M-step: Update parameters

πk =
Nk

N
(7)

µk =
1

Nk

N∑
i=1

rikxi (8)

Σk =
1

Nk

N∑
i=1

rik(xi − µk)(xi − µk)
⊤ (9)

where Nk =
∑N

i=1 rik is the effective number of points assigned to cluster k.
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KMeans as special case of GMM

KMeans can be seen as a special case of GMM with:

• All components are spherical Gaussians with identical covariance Σk = σ2I .
• Each cluster has equal prior probability πk = 1

K .

• Ultimately,

µk =
1

Nk

N∑
i=1

rikxi (10)

where rik ∈ {0, 1} indicates hard assignment of point i to cluster k.
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Hierarchical agglomerative clustering methods

Iteratively group clusters U and V by pairing the closest based on cluster
separation metric D(U,V )
• Unweighted pair-group method with arithmetic means

D(U,V ) =
∑
ij

d(ui , vj)

|U| · |V |
(11)

• Weighted pair-group method with arithmetic means

D(U,V ) =
d(S ,V ) + d(T ,V )

2
, U = S ∪ T (12)

• Single linkage method

D(U,V ) = min d(ui , vj) (13)

• Complete linkage method

D(U,V ) = max d(ui , vj) (14)

• Ward’s method

D(U,V ) =
|U| · |V |
|U|+ |V |

||ūi − v̄j ||2 (15)
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Hierarchical Clustering: Linkage

• Single linkage:
minimum distance or nearest neighbor (2 closest border points)

A

B

C

D

E

• Complete linkage:
maximum distance or farthest neighbor (2 farthest border points)

A

B

C

D

E

• Average linkage (unweighted pair-group method):
average distance (all to all)

A

B

C

D

E
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Agglomerative clustering algorithm

create N
singleton
clusters

start

merge
two most
similar
clusters

update
between-
cluster

distances

only one
cluster left?

stop
yes

no

Example:
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Choosing the clusters

We decide a Cut

Source: James et Al., Introduction to Statistical Learning
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Practical Considerations

Advantages

• No apriori number of clusters required

• Simple algorithms

• Self-organized structural view of data

Disadvantages

• Dendrogram often difficult to visualize

• Sometimes the inherent clusters in our data are not hierarchical by nature
(K-means performs better in these cases)
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HAC example: Bicycle ownership trends

Pattern discovery from survey data in 150 countries spanning 30 years 1
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Key findings
• To cluster time-series

data of varying
lengths, the dynamic
time warping (DTW)
algorithm can be
used to compute the
dissimilarity matrix

1Oke et al., 2015
https://www.sciencedirect.com/science/article/abs/pii/S2214140515006787
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Density-based clustering

Density-based clustering approaches are based on these hypotheses:

• Clusters are dense spatial regions

• Clusters are separated by low-density regions

• The density of points in a cluster are greater than a given minimum

Examples of density-based clustering algorithms:

• DBSCAN

• OPTICS
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Density-based spatial clustering of applications with noise

• Introduced in 1996 by Ester, Kriegel, Sander & Xu2

• Finds dense regions; recursively expands them to converge at clusters

• Parameters:
• ε: radius of neighborhood
• minPoints: minimum number of observations within a neighborhood

Source: https://www.nature.com/articles/srep34406

Figure: Example of clusters generated by DBSCAN on a dataset

2https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.121.9220
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DBSCAN: key definitions

• Epsilon neighborhood, Nε: set of all
observations within distance ε

• Core point: has at least minPoint
observations within its Nε

• DDR: An observation j is directly density
reachable from a core point i if j ∈ Nε

• DR: Two observations are density
reachable if there exists a chain of DDR
observations linking them

• Boundary/border points: these are DDR but
not core points

• Noise/outlier points: do not belong to any
observations Nε

Source: Giacoumidis et al. (2019)

https://www.mdpi.com/2076-3417/9/20/4398/htm

Figure: DBSCAN example with
minpoints = 4
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DBSCAN serial algorithm
1: procedure DBSCAN(X , ε,minPoints)
2: for each unvisited point x ∈ X do
3: mark x as visited
4: N ← FindNeighbors(x , ε)
5: if |N| < minPoints then
6: mark x as noise
7: else
8: C ← {x}
9: end if

10: for each point x ′ ∈ N do
11: N ← N \ x ′

12: if x ′ is not visited then
13: mark x ′ as visited
14: N ′ ← FindNeighbors(x ′, ε)
15: if |N ′| ≥ minPoints then
16: N ← N ∪ N ′

17: end if
18: end if
19: if x ′ is not yet a member of any cluster then
20: C ← C ∪ {x ′}
21: end if
22: end for
23: end for
24: end procedure
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DBSCAN example: stop detection

• Stop detection using smartphone data.

• Challenges: GPS data is noisy. Data gaps (e.g. no GPS inside buildings).
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DBSCAN considerations

• Performs well on geographical data

• Requires careful selection of two parameters (can be computationally
intensive)

• Several improvements and updates to the original DBSCAN algorithm have
been made (e.g. OPTICS: “Ordering points to identify the clustering
structure”)
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Fitness of clustering solution

Good clustering should:

• Minimize within-cluster (inter-cluster) variability (W)

• Maximize the silhouette (Rousseeuw, 1987)

• Several other goodness-of-fit measures can be used:
• Krzanowski-Lai (KL) index
• Gap statistic (Tibshirani et al., 2001)

• We consider the silhouette metric in detail
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Silhouette

• Silhouette of observation xj , s(xj):

s(xj) =
b(xj)− a(xj)

max{a(xj), b(xj)}
(16)

• a(xj)= average distance between xj and all other elements of its cluster
(intra-cluster distance)

• b(xj)= average distance between xj and all elements of the second nearest
cluster.

• Measures how well an observation fits a cluster

−1 < s(xj) < 1 (17)

• We want a(xj) to be small and b(xj) to be large:

a(xj) ≪ b(xj)=⇒s(xj) → 1 (18)
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Silhouette: visualization

source:Scikit-learn: scikit-learn.org/
stable/auto/examples/cluster/plot_

kmeans_silhouette_analysis.html
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Outlook

• Assigned reading: ISLR 10.3, 10.4

• Further recommended reading: ESL 14.3
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