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What is Clustering?

® Exploratory technique to discover useful relationships in data

Can also be used for classification
® (Clustering means grouping n observations into homogeneous partitions

There is no dependent variable, y (unsupervised learning)

® Observations x; are grouped based on similarity

® Objective:
® high similarity between items that belong to the same cluster
® low similarity (high separation) between different clusters
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Clustering Application: Marketing

® Customer segmentation based on brand loyalty and price sensitivity scores.
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Source: http://www.select-statistics.co.uk/
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Similarity Measures

® How similar are two observations?
Geographical distance

Vehicle color

Vehicle type

Vehicle brand

Engine type

Engine power

Figure: Vehicles as items for cluster analysis
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Similarity measures: numerical/quantitative data

Comparing two vectors, x; and x,, with p variables/features:

® Euclidean distance

® Manhattan distance

d(x;, xx) E |xij — Xuj
® Minkowski distance

P 1/m
xlaxk |: E |le ij j|
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Similarity measures: Categorical data

® Based on presence or absence of certain characteristics (binary variables).

| Variables
| 2 3 4 s

1
Ttem i ’ 1 0 o 1 1
Item k 1 1 0 1 0

® Contingency table: variable matches and mismatches between observations
(items) i and k.

Item k
1 0 Totals
.1 a b a+b
Item i 0 c 4 ctd (12-7)
Totals atc b+d p=a+b+c+d

Source: Johnson & Wichern

® Various similarity coefficients can be calculated from these frequencies:

® examples a:d,ﬁ

® Distance can be constructed from similarity measures. Under some hypothesis,

dik = \/2(1 — si), where sj is the similarity between samples i and k.
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Some notes about distance metrics

Care should be taken with multiple dimensions and varying scales

® Scaling/normalization typically leads to better results
. . X — Xmi
® E.g. Min-max scaling: Xpew = ———"—, Xpew € [0,1]

Xmax — Xmin

Choice of similarity measure:

® May lead to different groupings

® Subjective and domain-dependent

® Dependent on the variable type (discrete, continuous, binary)
® Dependent on the scale of measurement

® For items/entities, similarity is typically based on some measure of distance

® For variables, similarity is based on statistical correlation
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K-means Clustering: Definitions

® K: Number of clyste_rs. Design e Usually d(x, xx)? = Z}Zl(xj — ;%-)2
parameter to decide in advance. ® Goal: minimize total variation
® Cluster centroid: mean of observations p
assigned to cluster Cj: .
& , min Z W(Cx)
1 k=1
)_(k é ? Z X
|Gl x€ Cx ® = Assign x to Cx with minimum
_ L d(x, Xx)
® Within cluster variation of the k-th
cluster Sttt o oo 3
A 1
W(Ck) = Z d(X,Xk)
[ Ck|
x€ Cy

3 =3 T o T 7 E]

Source: www.scikit-learn.org
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K-means Clustering: lllustration (a

. K -
min iy ﬁ D xec, dx%)?
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Source: Cristopher M. Bishop, Pattern Recognition and Machine Learning
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K-means Clustering: lllustration (e

. K -
min iy ﬁ D xec, dx%)?
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Source: Cristopher M. Bishop, Pattern Recognition and Machine Learning
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K-means Clustering: Algorithm

initialize K ® At each Assign and Update, the total W
centroids decreases until convergence.
® The W at convergence depends on the
assign ob- initial centroids chosen (local minimum).
servations X . i
to clusters ® Repeat the algorithm with different random
initial centroids multiple times, and choose
ke the clustering with the lowest W'.
cluster
centroids
convergence

no reached?
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KMeans example: MIT tech shuttle
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Clustering Hubway rentals

® Comparing patterns

® Challenge: group stations according to similar demand patterns

25
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Clustering Hubway rentals

® Month of November 2013
® Consider weekdays only

T
— Pk Peak
Low Lsage
EL — A& Peak
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Clustering Hubway rentals (cont.
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Figure: AM Peak, PM Peak, Low Usage docks
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Choice of K

Which K would you choose?

10

® Having to pre-specify K is one limitation of the K-means approach

® However, several statistics can be used to choose the best K, e.g. gap
statistic (Tibshirani et al., 2001; ESL p. 519)

® An alternative is hierarchical [agglomerative] clustering (HAC), which gives a
tree-based representation of the dataset
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Mixture models for clustering

® Assume data generated from a mixture of K distributions
® Each cluster corresponds to one component of the mixture
® E.g. Gaussian Mixture Model (GMM):

K
p(x10) = > mN (x|, Sx) (4)

k=1

® 7. mixing coefficient (prior probability of cluster k), px: mean, Xy:
covariance matrix

® Parameters can be estimated using Expectation-Maximization (EM)
algorithm

Soft clustering: each observation has a probability of belonging to each
cluster

Hard clustering: assign each observation to the cluster with the highest
probability
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Gaussian mixture modeling (GMM

A mixture of K Gaussian distributions is given by:

K
p(x(6) = > meN (x|, i) ()

k=1

where 8 = (7, {pk, Xk }).
These parameters are estimated typically via the EM algorithm.
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EM algorithm for GMM clustering

e E-step: Compute responsibilities

i 7TkN(X,'|[,Lk,Ek)
ik = K (6)
> o TN (xi|py, X))

® M-step: Update parameters

N

T = W (7)
N

MKk = Z rik Xj (8)
o

3= Z #k) (9)

where N, = Zf\’:l rix is the effective number of points assigned to cluster k.
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KMeans as special case of GMM

KMeans can be seen as a special case of GMM with:
e All components are spherical Gaussians with identical covariance 3 = ¢21.
® Each cluster has equal prior probability 7, = %

e Ultimately,
N
1
Bk = Ne Z FikX; (10)
i=1

where ry € {0,1} indicates hard assignment of point i to cluster k.
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Hierarchical agglomerative clustering methods

Iteratively group clusters U and V' by pairing the closest based on cluster
separation metric D(U, V)
® Unweighted pair-group method with arithmetic means

UnVJ
D(U, V) ZIUI % (11)

Weighted pair-group method with arithmetic means
d(s,Vv)+d(T,V)

D(U,V) = > , U=SuT (12)
® Single linkage method
D(U, V) = mind(uj, vj) (13)
® Complete linkage method
D(U, V) = maxd(uj, v;) (14)
® Ward's method ol
D(U,V) = mlluf‘*vjl\ (15)
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Hierarchical Clustering: Linkage

® Single linkage:
minimum distance or nearest neighbor (2 closest border points)

7 N 7 N
/ N / N
;A \ / C \
| .’/4!//)——- D |
\ \ /
\ B / \ E /
N . N .

® Complete linkage:
maximum distance or farthest neighbor (2 farthest border points)

\ B. 1 T E !/
® Average linkage (unweighted pair-group method):
average distance (all to all)
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Agglomerative clustering algorithm

create N

singleton

clusters
-

merge
two most
similar
clusters

I

update
between-
cluster

distances

only one

no cluster left?
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Choosing the clusters

We decide a Cut

2 2 =R
L N @
o @ -
o = -4 — o -
o o - d

Source: James et Al Introduction to Statistical Learning
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Practical Considerations

Advantages
® No apriori number of clusters required
® Simple algorithms
® Self-organized structural view of data
Disadvantages
® Dendrogram often difficult to visualize

® Sometimes the inherent clusters in our data are not hierarchical by nature
(K-means performs better in these cases)
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HAC example: Bicycle ownership trends

Pattern discovery from survey data in 150 countries spanning 30 years !

Key findings

i ; y ~ s ® To cluster time-series
: \/\/\/\/\/— data of varying

' lengths, the dynamic
Bl = time warping (DTW)
algorithm can be

ntage bicycle ownership

1590 1995 2000 2005 2010 1590 1995 2000 2005 2010
used to compute the
dissimilarity matrix

bicycle

1990 1995 2000 2005 2010 %1950 1995 2000 2005 2010

Oke et al., 2015
https://wuw.sciencedirect.com/science/article/abs/pii/S$2214140515006787
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Density-based clustering

Density-based clustering approaches are based on these hypotheses:

® (lusters are dense spatial regions

® (lusters are separated by low-density regions

® The density of points in a cluster are greater than a given minimum
Examples of density-based clustering algorithms:

e DBSCAN

e OPTICS
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Density-based spatial clustering of applications with noise

e Introduced in 1996 by Ester, Kriegel, Sander & Xu?
® Finds dense regions; recursively expands them to converge at clusters
® Parameters:

® ¢: radius of neighborhood
® minPoints: minimum number of observations within a neighborhood

a e
% ‘ .\ @ Cluster core points
. ‘ @ Cluster boundary points
. ‘ .O O outlier points

. . O M cluster1
6 Q\.‘) [0 Cluster2

8 outlier cluster

Source: https://www.nature.com/articles/srep34406

Figure: Example of clusters generated by DBSCAN on a dataset

’https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.121.9220
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DBSCAN: key definitions

Epsilon neighborhood, N.: set of all
observations within distance ¢

® Core point: has at least minPoint
observations within its N,

® DDR: An observation j is directly density
reachable from a core point i if j € N,
® DR: Two observations are density
reachable if there exists a chain of DDR
observations linking them Souce, Gincoumi s a1, (2019
® Boundary/border pOintS: these are DDR but https://www.ndpi.com/2076-3417/9/20/4398/htm
not core points ) ]
R Figure: DBSCAN example with

Noise/outlier points: do not belong to any

] minpoints = 4
observations N,
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DBSCAN serial algorithm

1: procedure DBSCAN(X, £, minPoints)
2 for each unvisited point x € X do
3 mark x as visited

4 N < FINDNEIGHBORS(x, €)

5: if |[N| < minPoints then

6 mark x as noise

7 else

8 C«+ {x}

9: end if

10: for each point x’ € N do

11: N <+ N\ x

12: if x" is not visited then

13: mark x’ as visited

14: N’ < FINDNEIGHBORS(X', €)
15: if |N’| > minPoints then
16: N+ NUN

17: end if

18: end if

19: if x’ is not yet a member of any cluster then
20: C+ CU{x'}

21: end if

22: end for

23: end for
24: end procedure
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DBSCAN example: stop detection

® Stop detection using smartphone data.

® Challenges: GPS data is noisy. Data gaps (e.g. no GPS inside buildings).
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DBSCAN considerations

® Performs well on geographical data
® Requires careful selection of two parameters (can be computationally
intensive)

® Several improvements and updates to the original DBSCAN algorithm have
been made (e.g. OPTICS: “Ordering points to identify the clustering
structure”)
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Fitness of clustering solution

Good clustering should:
® Minimize within-cluster (inter-cluster) variability (W)
® Maximize the silhouette (Rousseeuw, 1987)

Several other goodness-of-fit measures can be used:

® Krzanowski-Lai (KL) index
® Gap statistic (Tibshirani et al., 2001)

® \We consider the silhouette metric in detail
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Silhouette

e Silhouette of observation x;, s(x;):

~ b(x;) = a(x;)
C4) = aa(). b)) (16)

a(xj)= average distance between x; and all other elements of its cluster
(intra-cluster distance)

b(x;)= average distance between x; and all elements of the second nearest
cluster.

® Measures how well an observation fits a cluster
-1<s(x) <1 (17)
® We want a(x;) to be small and b(x;) to be large:

a(xj) < b(xj)==s(x;) =1 (18)
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Silhouette: visualization

Silhouette analysis for KMeans clustering on sample data with n_clusters = 2

The silhouette plot for the various clusters.

The visualization of the clustered data,
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“The sihouete coefcientvaes

Silhouef

The silhoustte plot for the various clusters.

lysis for KMeans clustering

Featurespace or the 16t feaure

on sample data with n_clusters = 3

The visualization of the clustered data.

Clasterabel

Festurespace or the 2 festure

-100

“The sihouete coefcentvales
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source:Scikit-learn: scikit-learn.org/
stable/auto/examples/cluster/plot_
kmeans_silhouette_analysis.html



scikit-learn.org/stable/auto/examples/cluster/plot_kmeans_silhouette_analysis.html
scikit-learn.org/stable/auto/examples/cluster/plot_kmeans_silhouette_analysis.html
scikit-learn.org/stable/auto/examples/cluster/plot_kmeans_silhouette_analysis.html

® Assigned reading: ISLR 10.3, 10.4
® Further recommended reading: ESL 14.3
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